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Chapter 1
Differentiable Functions

1.1
First Principles

Definition 1.1 (differentiable function). A function f is differentiable at a point a if f is defined in
some open interval containing a and the limit

f ′(a) = lim
x→a

f (x)− f (a)
x−a

exists.

In this case, f ′(a) is the derivative of f at x = a.

Geometrically, f ′(a) is the slope of the tangent to the curve y = f (x) at x = a. The formula in Definition 1.1
is similar to one that students have learnt in H2 Mathematics, which is the derivative of f (x), denoted by f ′(x),
can be expressed as

lim
δx→0

f (x+δx)− f (x)
δx

.

Example 1.1 (MA2108 AY22/23 Sem 1 Warmup). Let y = f (x) be continuous everywhere for x ∈ (−∞,∞)

and satisfy

f (0) = 1, f (1) = e and f (x+ y) = f (x) f (y).

Prove that f (x) = ex for x ∈ (−∞,∞).
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Solution. It is clear that

f

(
n

∑
i=1

xi

)
=

n

∏
i=1

f (xi).

By first principles,

f ′(x) = lim
δx→0

f (x+δx)− f (x)
δx

= lim
δx→0

f (x) f (δx)− f (x)
δx

= f (x) lim
δx→0

f (δx)−1
δx

= f (x) f ′(0).

We set c = f ′(0) so f ′(x) = c f (x). Integrating, we have ln | f (x)| = cx+ d. Since f (0) = 1, then d = 0. Since
f (1) = e, then c = 1. Thus, ln | f (x)|= x. As such, we conclude that f (x) = ex. □

Definition 1.2. If f is differentiable at every point in (a,b), then f is differentiable on (a,b).

Proposition 1.1. If the function f : [a,b]→R is such that f is differentiable on (a,b) and the one sided
limits

L1 = lim
x→a+

f (x)− f (a)
x−a

and L2 = lim
x→b−

f (x)− f (b)
x−b

exist, then f is differentiable on [a,b]. In this case, f ′(a) = L1 and f ′(b) = L2.

1.2
Continuity and Differentiability

Definition 1.3. f is continuously differentiable on I if f is differentiable on I and f ′ is continuous on
I.

Definition 1.4. The collection of all functions which are continuously differentiable on I is denoted by
C1(I).

Proposition 1.2. If f is differentiable at a, then it is continuous at a.

Proof. We have

lim
x→a

f (x) = lim
x→a

( f (x)− f (a))+ lim
x→a

f (a)

= lim
x→a

(
f (x)− f (a)

x−a
· (x−a)

)
+ f (a)

=

(
lim
x→a

f (x)− f (a)
x−a

)(
lim
x→a

x−a
)
+ f (a)

= f ′(a) ·0+ f (a)

which is just f (a).

The Weierstrass function is an example of a real-valued function that is continuous everywhere but
differentiable nowhere. It is an example of a fractal curve named after its discoverer German mathematician
Karl Weierstrass†.

†This link provides an analysis of the Weierstrass function involving its uniform convergence (this term will be studied in due course)
and it being nowhere differentiable. This involves the Weierstrass M-test.

https://math.berkeley.edu/~brent/files/104_weierstrass.pdf
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Definition 1.5 (Weierstrass function). In Weierstrass’s original paper, the function was defined as the
following Fourier series:

f (x) =
∞

∑
n=0

an cos(bn
πx),

where 0 < a < 1, b is a positive odd integer and ab > 1+3π/2.

Theorem 1.1 (Carathéodory’s theorem). Let I be an interval, f : I →R and c ∈ I. Then f ′(c) exists if
and only if there exists a function φ on I such that φ is continuous at c and

f (x)− f (c) = φ(x)(x− c) for all x ∈ I.

Proposition 1.3 (chain rule). Let I and J be intervals, and let g : I → R and f : J → R be such that
f (J)⊆ I. If a ∈ J, f is differentiable at a and g is differentiable at f (a), then h = g◦ f is differentiable at
a, and

h′(a) = g′( f (a)) f ′(a).

Theorem 1.2 (inverse function theorem). If f is a continuously differentiable function with non-zero
derivative at a; then f is invertible in a neighbourhood of a, the inverse is continuously differentiable,
and the derivative of the inverse function at b = f (a) is the reciprocal of the derivative of f at a. As an
equation, we have

( f−1)′(b) =
1

f ′(a)
=

1
f ′( f−1(b))

.

1.3
Mean Value Theorem and Applications

Definition 1.6. Let I be an interval, f : I → R and x0 ∈ I.
(i) If f (x0)≥ f (x) for all x ∈ I, then f (x0) is the absolute maximum of f on I

(ii) If f (x0)≤ f (x) for all x ∈ I, then f (x0) is the absolute minimum of f on I
(iii) If there exists δ > 0 such that f (x)≤ f (x0) for all x ∈ (x0 −δ ,x0 +δ )⊆ I, then f (x0) is a relative

maximum of f
(iv) If there exists δ > 0 such that f (x)≤ f (x0) for all x ∈ (x0 −δ ,x0 +δ )⊆ I, then f (x0) is a relative

maximum of f
(v) If there exists δ > 0 such that f (x)≥ f (x0) for all x ∈ (x0 −δ ,x0 +δ )⊆ I, then f (x0) is a relative

minimum of f
(vi) If f (x0) is either a relative minimum or relative maximum of f , then f (x0) is a relative extremum

of f

Remark 1.1. A relative extremum can only occur at an interior point, but an absolute extremum may
occur at one of the end points of the interval. So if a function has an absolute maximum at a point x0, it
may not have a relative maximum at x0. If f has an absolute maximum at an interior point x0 of I, then
f (x0) is also a relative maximum of f .



MA3210 MATHEMATICAL ANALYSIS II Page 5 of 30

Lemma 1.1. Let f : (a,b)→ R and f ′(c) exists for some c ∈ (a,b).
(i) If f ′(c)> 0, then there exists δ > 0 such that

f (x)< f (c) for every x ∈ (c−δ ,c) and f (x)> f (c) for every x ∈ (c,c+δ ).

(ii) If f ′(c)< 0, then there exists δ > 0 such that

f (x)> f (c) for every x ∈ (c−δ ,c) and f (x)< f (c) for every x ∈ (c,c+δ ).

Theorem 1.3 (Fermat’s extremum theorem). Suppose c is an interior point of an interval I and f :
I → R is differentiable at c. If f has a relative extremum at c, then f ′(c) = 0.

Proof. Without a loss of generality, assume that f has a relative maximum at c (the proof if f has a relative
minimum is similar). Suppose on the contrary that either f ′(c)> 0 or f ′(c)< 0. If f ′(c)> 0, then by the lemma
above, there exists δ > 0 such that f (x)< f (c) for every x ∈ (c−δ ,c) and f (x)> f (c) for every x ∈ (c,c+δ ).
This contradicts the assumption that f has a relative maximum at c. The proofs for other cases are similar.

Remark 1.2. A function f may have a relative extremum at x0, but f ′(x0) does not exist.

Example 1.2. Consider f (x) = |x|. There is a relative (absolute) minimum at x = 0, but f ′(0) does not exist.

The converse of Fermat’s theorem is false. For example, consider f (x) = x3, where f ′(0) = 0 but x = 0 is
not a relative extremum point of f . It is merely a point of inflection.

Theorem 1.4 (Rolle’s theorem). If f is continuous on [a,b], differentiable on (a,b) and f (a) = f (b),
then there exists c ∈ (a,b) such that f ′(c) = 0.

Proof. The proof where f (x) is a constant will not be discussed since it is trivial. For the more meaningful
cases, we have f (x)> f (a) or f (x)< f (a) for some x ∈ (a,b). Without a loss of generality, we shall prove the
former case since the proof for the latter is similar.

By the extreme value theorem, we know that f (x) has a maximum, M in the closed interval [a,b]. As
f (a) = f (b), the maximum value is attained at x = c. That is, f (c) = M. So, f has a local maximum at c.
Since f is differentiable, the result follows.

Theorem 1.5 (mean value theorem). If f is continuous on [a,b] and differentiable on (a,b), then there
exists c ∈ (a,b) such that

f ′(c) =
f (b)− f (a)

b−a
.

Proof. We wish to construct a function g : [a,b] → R such that g(a) = g(b) = 0, with a point c ∈ (a,b) such
that g′(c) = 0. Suppose

g(x) = f (x)− f (a)− f (b)− f (a)
b−a

· (x−a).

It is clear that g is continuous on [a,b] and differentiable on (a,b), and g(a) = g(b) = 0. By Rolle’s theroem,
there exists c ∈ (a,b) such that

g′(c) = f ′(c)− f (b)− f (a)
b−a

= 0.
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Rearranging the equation, we are done.

Corollary 1.1. If f is continuous on [a,b], differentiable on (a,b) and f ′(x) = 0 for all x ∈ (a,b), then
f is constant on [a,b].

Example 1.3 (Berkeley Problems in Mathematics P1.1.25). Let the function f from [0,1] to [0,1] have the
following properties:

(i) f is C1 (i.e. f is differentiable and its derivative is continuous)
(ii) f (0) = f (1) = 0

(iii) f ′ is non-increasing (i.e. f is concave down)
Prove that the arc length of the graph of f does not exceed 3.

Solution. Since f is continuous on [0,1] and differentiable on (0,1), by Rolle’s theorem, there exists c ∈ (0,1)
such that f ′(c) = 0. Since f is concave down, then f is increasing on (0,c) and decreasing on (c,1). On [0,c],
the arc length of f is given by ∫ c

0

√
1+[ f ′(x)]2 dx.

We shall partition (0,c) into n equally sized subintervals. Hence, each interval has width c/n. So,∫ c

0

√
1+[ f ′(x)]2 dx = lim

n→∞

c
n

n

∑
k=1

√
1+[ f ′(ζk)]

2 where ζk =

(
c(k−1)

n
,
ck
n

)
.

By the mean value theorem, each ζk satisfies

f ′ (ζk) =
f (ck/n)− f (c(k−1)/n)

c/n

so

∫ c

0

√
1+[ f ′ (x)]2 dx ≤ lim

n→∞

c
n

n

∑
k=1

√
1+
[

f (ck/n)− f (c(k−1)/n)
c/n

]2

= lim
n→∞

n

∑
k=1

√( c
n

)2
+

[
f
(

ck
n

)
− f

(
c(k−1)

n

)]2

≤ lim
n→∞

n

∑
k=1

[
c
n
+ f

(
ck
n

)
− f

(
c(k−1)

n

)]
since

√
a2 +b2 ≤ a+b

= c+ f (c) by method of difference.

In a similar fashion, one can prove that∫ 1

c

√
1+[ f ′ (x)]2 dx ≤ 1− c+ f (c) .

so ∫ 1

0

√
1+[ f ′ (x)]2 dx ≤ c+ f (c)+1− c+ f (c) = 1+2 f (c)≤ 1+2 = 3

where we used the fact that the range of f is [0,1]. □

Proposition 1.4 (increasing and decreasing functions). Let f be differentiable on (a,b).
(i) If f ′(x)≥ 0 for all x ∈ (a,b), then f is increasing on (a,b)
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(ii) If f ′(x)≤ 0 for all x ∈ (a,b), then f is decreasing on (a,b)

Theorem 1.6 (first derivative test). Let f be a continuous function on [a,b] and c ∈ (a,b). Suppose f
is differentiable on (a,b) except possibly at c.

(i) If there is a neighbourhood (c−δ ,c+δ )⊆ I of c such that f ′(x)≥ 0 for x∈ (c−δ ,c) and f ′(x)≤ 0
for x ∈ (c,c+δ ), then f (c)≥ f (x) ∀x ∈ (c−δ ,c+δ ). Hence, f has a relative maximum at c

(ii) If there is a neighbourhood (c−δ ,c+δ )⊆ I of c such that f ′(x)≤ 0 for x∈ (c−δ ,c) and f ′(x)≥ 0
for x ∈ (c,c+δ ), then f (c)≤ f (x) ∀x ∈ (c−δ ,c+δ ). Hence, f has a relative minimum at c

Consider a function f (x). Its first derivative is denoted by f ′(x), second derivative is denoted by f ′′(x) =
f (2)(x), and so on. In general, for n ∈ N, the nth derivative of f at c is defined as

f (n)(c) = ( f n−1)′(c).

Let I be an interval. Then, for n ∈ N, Cn(I) is defined to be the set of functions f such that f (n) exists and is
continuous on I. Note that

C∞(I) =
∞⋂

n=1

Cn(I).

If ∈ C∞(I), then f is infinitely differentiable on I.

Proposition 1.5. For m > n ≥ 1, where m,n ∈ Z,

C∞(I)⊆ Cm(I)⊆ Cn(I)⊆ C(I).

Theorem 1.7 (second derivative test). Let f be defined on an interval I and let its derivative f ′ exist
on I. Suppose c is an interior point of f such that f ′(c) = 0 and f ′′(c) exists.

(i) If f ′′(c)> 0, then f has a relative minimum at c
(ii) If f ′′(c)< 0, then f has a relative maximum at c

(iii) If f ′′(c) = 0, then the test is inconclusive. Hence, we have to use the first derivative test to prove
whether c is a relative minimum, relative maximum, or a point of inflection

Theorem 1.8 (Cauchy’s mean value theorem). Let f and g be continuous on [a,b] and differentiable
on (a,b), and g′(x) ̸= 0 for all x ∈ (a,b). Then, there exists c ∈ (a,b) such that

f ′(c)
g′(c)

=
f (b)− f (a)
g(b)−g(a)

.

Proof. We first claim that g(a) ̸= g(b). Suppose otherwise, then g(a) = g(b), so by Rolle’s theorem, there
exists x0 ∈ (a,b) such that g′(x0) = 0, contradicting the assumption that g′(x) ̸= 0 for all x ∈ (a,b). Next, define
h : [a,b]→ R by

h(x) =
f (b)− f (a)
g(b)−g(a)

· ((g(x)−g(a))− ( f (x)− f (a)),

where x ∈ [a,b]. Since h is continuous on [a,b], differentiable on (a,b) and h(a) = h(b) = 0, by Rolle’s theorem,
there exists c ∈ (a,b) such that h′(c) = 0. The result follows.
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Theorem 1.9 (Taylor’s theorem). Let f be a function such that f ∈ Cn([a,b]) and f (n+1) exists on
(a,b). If x0 ∈ [a,b], then for any x ∈ [a,b], there exists a point c between x and x0 such that

f (x) =
n+1

∑
k=0

f k(c)
k!

(x− x0)
k.

Corollary 1.2. If n = 0, then f (x) = f (x0)+ f ′(c)(x− x0), which is the mean value theorem.

The polynomial Pn(x), where

Pn(x) =
n

∑
k=0

f k(x0)

k!
(x− x0)

k

is the nth Taylor polynomial for f at x0.

By Taylor’s theorem, as f (x) = Pn(x)+Rn(x), then

Rn(x) =
f (n+1)(cn)

(n+1)!
(x− x0)

n+1

for some point cn between x and x0. This formula for Rn is the Lagrange form of the remainder.

Let f be infinitely differentiable on I = (x0 − r,x0 + r) and x ∈ I. Then, recall that

f (x) =
∞

∑
n=0

f (n)(x0)

n!
(x− x0)

n

if and only if

lim
n→∞

Rn(x) = lim
n→∞

f (n+1)(cn)

(n+1)!
(x− x0)

n+1 = 0,

where each cn is between x and x0.
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Chapter 2
The Riemann–Stieltjes Integral

2.1
Definition and Existence

Let I = [a,b]. A finite set P = {x0,x1,x2, . . . ,xn} where

a < x0 < x1 < x2 < .. . < xn < b

is a partition of I. It divides I into the subintervals as

I = [x0,x1]∪ [x1,x2]∪ [x2,x3]∪ . . .∪ [xn−1,xn] =
n⋃

i=1

[xi−1,xi].

Let f : [a,b]→R be a bounded function and let P= {x0,x1,x2, . . . ,xn} be a partition of [a,b]. For each 1≤ i≤ n,
let

Mi = Mi( f ,P) = sup{ f (x) : x ∈ [xi−1,xi]} ,

mi = mi( f ,P) = inf{ f (x) : x ∈ [xi−1,xi]} and

∆xi = xi − xi−1. Define the upper sum and lower sum of f with respect to P to be

U( f , p) =
n

∑
i=1

Mi∆xi and L( f , p) =
n

∑
i=1

mi∆xi.

Note that each partition may not be of uniform length.

By setting m = inf{ f (x) : x ∈ [a,b]} and M = sup{ f (x) : x ∈ [a,b]}, then

m(b−a)≤ L( f , p)≤U( f , p)≤ M(b−a).

Furthermore,

m(b−a)≤
∫ b

a
f ≤ M(b−a)

and if f (x)≥ 0 for all x ∈ [a,b], then ∫ b

a
f ≥ 0.

Definition 2.1 (Darboux integral). The upper Darboux integral of f on [a,b] is defined to be

U( f ) =
∫ b

a
f (x) dx = inf{U( f ,P) : P is a partition of [a,b]}

and the lower Darboux integral of f on [a,b] is defined to be

L( f ) =
∫ b

a
f (x) dx = sup{L( f ,P) : P is a partition of [a,b]} .

Lemma 2.1. L( f )≤U( f )
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Proof. We prove by contradiction. Suppose U( f )< L( f ). Then, there exists a partition P1 of [a,b] such that

U( f )≤U( f ,P1)< L( f ).

Also, there exists a partition P2 of [a,b] such that

U( f )≤U( f ,P1)< L( f ,P2)≤ L( f ).

However, L( f ,P2)≤U( f ,P1), which is a contradiction.

From Lemma 2.1, it is clear that for partitions P and Q of [a,b],

L( f ,P)≤ L( f ,P∪Q)≤U( f ,P∪Q)≤U( f ,Q),

and consequently,

L( f ) =
∫ b

a
f (x) dx ≤

∫ b

a
f (x) dx ≤U( f ).

Definition 2.2. If P and Q are partitions of [a,b], then Q is a refinement of P if P ⊆ Q.

Proposition 2.1. If P and Q are partitions of [a,b] with Q a refinement of P, then

L( f ,P)≤ L( f ,Q) and U( f ,Q)≤U( f ,P).

Definition 2.3. A bounded function f : [a,b]→ R is Riemann integrable on [a,b] if

∫ b

a
f (x) dx ≤

∫ b

a
f (x) dx.

The Riemann integral is only defined for bounded functions (i.e. if f is unbounded on [a,b], it is not
integrable on [a,b]) .

Example 2.1. ∫ 1

−1

1
x2 dx

is not integrable since limx→0 1/x2 = ∞, implying that the function is unbounded on [−1,1].

Consider the Dirichlet function and denote it by f (x). Since the rational and irrational numbers both form
dense subsets of R, then f takes on the value of 0 and 1 on every sub-interval of any partition. Thus for any
partition P, U( f ,P) = 1 and L( f ,P) = 0. By noting that the upper and lower Darboux integrals are unequal, we
conclude that f is not Riemann integrable on [0,1]†.

2.2
Riemann Integrability Criterion and Consequences

Theorem 2.1 (Riemann integrability criterion). For a bounded function f : [a,b] → R, then f is
integrable on [a,b] if and only if for any ε > 0, there exists a partition P of [a,b] such that

U( f ,P)−L( f ,P)< ε.

†A fun fact is that the Dirichlet function is actually Lebesgue integrable (covered in MA4262).
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Proof. We first prove that if U( f ,P)−L( f ,P) < ε , then f is integrable on [a,b]. Note that ε > 0 is arbitrary.
Recall that

L( f ,P)≤ L( f )≤U( f )≤U( f ,P).

Hence,
U( f )−L( f )≤U( f ,P)−L( f ,P)< ε,

and we are done.

Now, suppose f is integrable on [a,b]. We wish to prove that U( f ,P)− L( f ,P) < ε . Note that there exists
a partition P1 on [a,b] such that U( f ,P1)<U( f ) so

U( f ,P1)<U( f )+
ε

2
.

In a similar fashion, there exists a partition P2 such that

L( f ,P2)> L( f )− ε

2
.

Let P = P1 ∪P2 be the common refinement of the previous two partitions. Since

0 ≤U( f ,P)−L( f ,P),

then
0 ≤U( f ,P)−L( f ,P)<U( f )−L( f )+

ε

2
+

ε

2
< ε.

Corollary 2.1. If f : [a,b]→ R is monotone on [a,b], then f is integrable on [a,b].

Corollary 2.2. If f : [a,b]→ R is continuous on [a,b], then f is integrable on [a,b].

Corollary 2.3. Let f ,g : [a,b]→ R be bounded functions, P be a partition of [a,b] and c ∈ R. Then,
(i)

L(c f ,P) =

{
cL( f ,P) if c > 0
cU( f ,P) if c < 0

(ii)

U (c f ,P) =

{
cU( f ,P) if c > 0
cL( f ,P) if c < 0

(iii)
L( f ,P)+L(g,P)≤ L( f +g,P)≤U( f +g,P)≤U( f ,P)+U(g,P)

Proposition 2.2. Let f ,g : [a,b]→ R be integrable on [a,b] and c ∈ R. Then,
(i) Just like linear transformations, the function c f +g is integrable on [a,b] and∫ b

a
(c f +g) = c

∫ b

a
f +

∫ b

a
g.

(ii) If f (x)≤ g(x) for all x ∈ [a,b], then ∫ b

a
f ≤

∫ b

a
g.
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(iii) | f | is integrable on [a,b] and ∣∣∣∣∫ b

a
f
∣∣∣∣≤ ∫ b

a
| f |.

(iv) f g is integrable on [a,b].

Proposition 2.3. If f is integrable on [a,b], then for any c ∈ (a,b), f is integrable on [a,c] and [c,b].
The converse is true and we have the following result:∫ b

a
f =

∫ c

a
f +

∫ b

c
f

Let f be a continuous function on [a,b]. If P = {x0,x1,x2, . . . ,xn} is a partition of [a,b], define

L( f ,P) =
n

∑
i=1

√
(xi − xi−1)2 +( f (xi)− f (xi−1))2,

where the supremum is taken over all possible partitions a = x0 < x1 < x2, . . . < xn = b. This definition as the
supremum of the all possible partition sums is also valid if f is merely continuous, not differentiable.

2.3
Fundamental Theorems of Calculus

Theorem 2.2 (First Fundamental Theorem of Calculus). Let f be integrable on [a,b] and for x∈ [a,b],
let

F(x) =
∫ x

a
f .

If f is continuous at a point c ∈ [a,b], then F is differentiable at c and F ′(c) = f (c).

Remark 2.1. Not all functions have an elementary antiderivative. That is, for example, there do not
exist elementary functions F(x) and G(x) such that

F(x) =
∫

e−x2
dx and G(x) =

∫ 1
lnx

.

Theorem 2.3 (Second Fundamental Theorem of Calculus). Let g be a differentiable function on [a,b]
and assume that g′ is continuous on [a,b]. Then,∫ b

a
g′ = g(b)−g(a).

Theorem 2.4 (Cauchy’s Fundamental Theorem of Calculus). Let g be a differentiable function on
[a,b] and assume that g′ is integrable on [a,b]. Then,∫ b

a
g′ = g(b)−g(a).
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Example 2.2. It is possible for the derivative of a function to not be integrable. Consider the following
function:

f (x) =

x2 sin
(
1/x2

)
x ̸= 0;

0 x = 0.

For x ̸= 0,

f ′(x) =−2
x

cos
(

1
x2

)
+2xsin

(
1
x2

)
but f ′(x) is not integrable on [−1,1] as this is a region of oscillating discontinuity!

2.4
Riemann Sum

Let f : [a,b] → R be a bounded function and P = {x0,x1,x2, . . . ,xn} be a partition of [a,b] and let ∆x =

xi − xi−1 for 1 ≤ i ≤ n. Then, the norm of P, denoted by ∥P∥, is defined by

∥P∥= max{∆xi : 1 ≤ i ≤ n} .

Then, for every ε > 0, there exists δ > 0 such that for any partition P of [a,b], ∥P∥< δ implies that

U( f ,P)<
∫ b

a
f + ε and L( f ,P)>

∫ b

a
f − ε.

We are now ready to define the Riemann sum of f with respect to P.

Definition 2.4 (Riemann sum). Let ξi be a point in the ith sub-interval [xi−1,xi] for 1 ≤ i ≤ n. The sum

S( f ,P)(ξ ) =
n

∑
i=1

f (ξi)(xi − xi−1) =
n

∑
i=1

f (ξi)∆xi

is the Riemann sum of f with respect to P and ξ = (ξ1, . . . ,ξn).

If there exists A ∈ R such that for every ε > 0, there exists δ > 0 such that for any partition P of [a,b] and
any choice of ξ = (ξ1, . . . ,ξn),

∥P∥< δ implies |S( f ,P)(ξ )−A|< ε,

then
lim

∥P∥→0
S( f ,P)(ξ ) = A.

Note that
L( f ,P)≤ S( f ,P)(ξ )≤U( f ,P).

Let f : [a,b]→ R be a bounded function. Then,

lim
∥P∥→0

U( f ,P) =
∫ b

a
f and lim

∥P∥→0
L( f ,P) =

∫ b

a
f .

Hence, f is integrable on [a,b] and
∫ b

a f = A if and only if

lim
∥P∥→0

S( f ,P)(ξ ) = A.
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Corollary 2.4. Let f : [a,b]→ R be integrable on [a,b]. For each n ∈ N, let Pn =
{

x(n)0 ,x(n)1 , . . . ,x(n)mn

}
be a partition of [a,b] and let ξ (n) =

(
ξ
(n)
1 , . . . ,ξ

(n)
mn

)
be such that ξ

(n)
i ∈

[
x(n)i−1,x

(n)
i

]
for all 1 ≤ i ≤ mn.

Define the sequence yn as follows:
yn = S( f , p)(ξ (n))

If limn→∞ ∥Pn∥= 0, then

lim
n→∞

yn =
∫ b

a
f .

2.5
Improper Integrals

Definition 2.5 (improper integral). An improper integral is one such that either the integrand, f , is
unbounded on (a,b) or the interval of integration is unbounded.

Proposition 2.4. Suppose f is defined on [a,b) and f is integrable on [a,c] for every c ∈ (a,b). If the
limit

L = lim
c→b−

∫ c

a
f (x) dx

exists, then

the improper integral
∫ b

a
f (x) dx converges and

∫ b

a
f (x) dx = L.

If the limit does not exist, then the improper integral diverges.

Similarly, if f is defined on (a,b] and f is integrable on [c,b] for every c ∈ (a,b), then∫ b

a
f (x) dx = lim

c→a+
f (x) dx provided that the limit exists.
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Chapter 3
Sequences and Series of Functions

3.1
Pointwise and Uniform Convergence

An example of a sequence of functions fn(x), where n ∈ N is

fn(x) =
x+ xn

2+ xn

for x ∈ [0,1]. Then, consider the integral ∫ 1
2

0
fn(x).

As n → ∞, what can be deduced?

This section deals with questions like these. To start off, we need to introduce the ideas of pointwise convergence
and uniform convergence.

Definition 3.1 (pointwise convergence). Let E be a non-empty subset of R. Suppose for each n ∈ N,
we have a function fn : E → R. Then, fn is a sequence of functions on E. For each x ∈ E, the sequence
fn(x) of real numbers converges. Define the function f : E → R by

f (x) = lim
n→∞

fn(x) for all x ∈ E.

Then, fn converges to f pointwise on E, and so fn → f pointwise on E.

Definition 3.2 (pointwise convergence). fn → f pointwise on E if and only if for every x ∈ E and for
every ε > 0, there exists K = K(ε,x) ∈ N such that

n ≥ K =⇒ | fn(x)− f (x)|< ε.

Remark 3.1. If fn → f pointwise on I and each fn is continuous on I, then f is not necessarily
continuous on I.

Example 3.1. Consider fn(x) = xn for x ∈ [0,1]. Note that each fn is continuous on [0,1]. However, f is not
continuous at x = 1 since for x ∈ [0,1), then

lim
n→∞

fn(x) = 0

but for x = 1, then

lim
n→∞

fn(x) = 1.

Remark 3.2. If fn → f pointwise on [a,b] and each fn is integrable on [a,b], then
(1). f is not necessarily integrable on [a,b]
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(2). the pointwise convergence ∫ b

a
gn →

∫ b

a
g is not necessarily true.

Remark 3.3. If fn → f pointwise on [a,b] and each fn and f are differentiable on [a,b], then f ′n → f ′

not necessarily pointwise on [a,b].

Example 3.2. Consider fn(x) = sin(nx)/
√

n,x ∈ R. f (x) = 0 for all x ∈ R, and thus fn → f pointwise on R.
As f ′(x) =

√
ncos(nx), for each n ∈ N, f ′ = 0, but f ′n → f ′ pointwise on R. Then, f ′n(0) =

√
n → ∞ as n → ∞,

but f ′(0) = 0.

Definition 3.3 (uniform convergence). A sequence of functions fn converges uniformly to f on E if
for all ε > 0, there exists K ∈ N such that

n ≥ K =⇒ | fn(x)− f (x)|< ε

for all x ∈ E. In this case, fn → f uniformly on E. We say that the sequence fn of functions converges
uniformly on E if there exists a function f such that fn converges to f uniformly on E.

Definition 3.4 (uniform norm). Let E ⊆ R and let φ : E → R be a bounded function. The uniform
norm of φ on E is defined as

∥φ∥E = sup{|φ(x)| : x ∈ E} .

Then, |φ(x)| ≤ ∥φ∥E for all x ∈ E.

Lemma 3.1. A sequence of functions fn converges to f uniformly on E if and only if ∥ fn − f∥E → 0.

Proposition 3.1 (Cauchy criterion). A sequence of functions fn converges uniformly on E if and only
if for each ε > 0, there exists k ∈ N such that

∥ fn − fm∥E < ε for all m,n ≥ K.

Proposition 3.2. The following hold:
(i) If fn converges uniformly on E, then fn converges pointwise on E

(ii) If fn converges uniformly on E and F ⊆ E, then fn converges uniformly on F

Proposition 3.3. If fn converges uniformly to f on an interval I and each fn is continuous at x0 ∈ I,
then f is continuous at x0.

Corollary 3.1. If fn converges uniformly to f on I and each fn is continuous on I, then f is continuous
on I. Hence,

lim
x→x0

f (x) = f (x0)
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and
lim

x→x0
lim
n→∞

fn(x) = lim
n→∞

fn(x0) = lim
n→∞

lim
x→x0

fn(x),

implying that we can interchange the order of the two limit operations.

Proposition 3.4. Suppose fn → f uniformly on [a,b] and each fn is integrable on [a,b]. Then,
(i): f is integrable on [a,b] and

(ii): for each x0 ∈ [a,b], the sequence of functions

Fn(x) =
∫ x

x0

fn(t) dt

converges uniformly to the function

F(x) =
∫ x

x0

f (t) dt

on [a,b]. Hence,

lim
n→∞

∫ x

x0

fn(t) dt =
∫ x

x0

lim
n→∞

fn(t) dt

and in particular,

lim
n→∞

∫ b

a
fn(t) dt =

∫ b

a
f (t) dt.

Proposition 3.5. Suppose fn is a sequence of differentiable functions on [a,b] such that

fn (x0) converges for some x0 ∈ [a,b] and f ′n converges uniformly on [a,b] .

Then, fn converges uniformly on [a,b] to a differentiable function f and for a ≤ x ≤ b,

lim
n→∞

f ′n(x) = f ′(x).

3.2
Infinite Series of Functions

If fn is a sequence of functions on E, then

S =
∞

∑
n=1

fn is an infinite series of functions.

For each n ∈ N and x ∈ E, the nth partial sum of S is the function

Sn(x) =
n

∑
i=1

fi(x).

Proposition 3.6. The following hold:
(i) S converges pointwise to a function S on E if the sequence Sn of functions converges pointwise to

S on E
(ii) S converges uniformly to a function S on E if the sequence Sn of functions converges uniformly to

S on E
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(iii) S converges absolutely on E if the series

∞

∑
n=1

| fn| converges pointwise on E

Proposition 3.7 (Cauchy criterion). Let fn be a sequence of functions on E. Then,

∞

∑
n=1

fn converges uniformly on E

if and only if for every ε > 0, there exists K ∈ N such that

for all n > m ≥ K we have

∥∥∥∥∥ n

∑
i=m+1

fi

∥∥∥∥∥
E

< E.

Corollary 3.2. If

∞

∑
n=1

fn converges uniformly on E then fn → 0 uniformly on E.

Theorem 3.1 (Weierstrass M-test). Let fn be a sequence of functions on E and Mn be a sequence of
positive real numbers such that ∥ fn∥E ≤ Mn for all n ∈ N. If

∞

∑
n=1

Mn converges then
∞

∑
n=1

fn converges uniformly and absolutely on E.

Example 3.3. We can prove that the series expansion of the exponential function can be uniformly convergent
on any bounded subset S ⊆ C.

Solution. Let z ∈ C. Note that the series expansion of the complex exponential function is

ez =
∞

∑
n=0

zn

n!
.

Any bounded subset is a subset of some disc DR of radius R centred on the origin on the complex plane. The
Weierstrass M-test requires us to find an upper bound, Mn, on the terms of the series, with Mn independent of
the position in the disc. Observe that ∣∣∣∣ zn

n!

∣∣∣∣≤ |z|n

n!
≤ Rn

n!

so by setting M = Rn/n!, we are done. □

Proposition 3.8. If
∞

∑
n=1

fn → f uniformly on I

and each fn is continuous on each x0 ∈ I, then f is continuous at x0.

We now state some properties related to differentiability and integrability.
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Proposition 3.9. If

∞

∑
n=1

fn → f uniformly on [a,b] and each fn is integrable on [a,b] ,

(1). f is integrable on [a,b]
(2). for every x ∈ [a,b],

∞

∑
n=1

∫ x

a
fn(t) dt =

∫ x

a
f (t) dt =

∫ x

a

∞

∑
n=1

fn(t) dt

where the convergence is uniform on [a,b]

Proposition 3.10. Suppose fn is a sequence of differentiable functions on [a,b] such that

∞

∑
n=1

fn(x0) converges for some x0 ∈ [a,b] and
∞

∑
n=1

f ′n converges uniformly on [a,b] .

Then,

∞

∑
n=1

fn converges uniformly on [a,b] to a differentiable function f and

∞

∑
n=1

f ′n(x) = f ′(x) for a ≤ x ≤ b
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Chapter 4
Power Series

4.1
Introduction

Definition 4.1 (power series). A series of functions of the form

∞

∑
n=0

an(x− x0)
n = a0 +a1(x− x0)+a2(x− x0)

2 + . . .+an(x− x0)
n + . . .

where x0,a1,a2, . . . are constants, is a power series in x− x0. So,

∞

∑
n=0

(x− x0)
n =

∞

∑
n=0

fn(x)

where for each n, fn : R→ R, fn(x) = an(x− x0)
n.

If x0 = 0, the power series becomes

∞

∑
n=0

anxn = a0 +a1x+a2x2 + . . .+anxn + . . .

Proposition 4.1. Let
∞

∑
n=0

an(x− x0)
n be a power series.

(i) If it converges at x = x1, then it is absolutely convergent for all values of x for which |x− x0| <
|x1 − x0|

(ii) If it diverges for x = x2, then it diverges for all values of x such that |x− x0|> |x2 − x0|

4.2
Radius of Convergence

Definition 4.2 (radius of convergence). Given a power series, let

S =

{
|x− x0| : x ∈ R and

∞

∑
n=0

an(x− x0)
n converges

}

The radius of convergence of the series, R, is defined as follows:
(i) R = 0 if

∞

∑
n=0

an(x− x0)
n converges only for x = x0

(ii) R = ∞ if
∞

∑
n=0

an(x− x0)
n converges for all x ∈ R
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(iii) R = supS if
∞

∑
n=0

an(x− x0)
n converges for some x and diverges for others

Example 4.1. The series
∞

∑
n=0

n!xn

converges only at x = 0, implying that R = 0.

Example 4.2. The exponential function ex converges at every point of R, and so R = ∞.

Example 4.3. Consider the geometric series 1+ x+ x2 + x3 + . . ., which converges for all x ∈ R and diverges
for all oher x’s. Hence, R = 1.

Definition 4.3 (absolute convergence).

∞

∑
n=0

an(x− x0)
n converges absolutely

for all x ∈ (x0 −R,x0 +R) and diverges for all x with |x− x0|> R.

Theorem 4.1 (ratio test). Suppose an is non-zero for all n. Let

ρ = lim
n=0

∣∣∣∣an+1

an

∣∣∣∣.
(i) If the limit ρ exists, then the radius of convergence, R, of the power series is

R =

1/ρ if ρ > 0;

∞ if ρ = 0

(ii) If ρ = ∞, then R = 0

The ratio test is frequently easier to apply than the root test since it is usually easier to evaluate ratios than
nth roots. However, the root test is a stronger test for convergence. This means that whenever the ratio test shows
convergence, the root test does too and whenever the root test is inconclusive, the ratio test is too (merely the
contrapositive statement).

For any sequence xn of positive numbers,

liminf
n→∞

xn+1

xn
≤ liminf

n→∞

n
√

xn and limsup
n→∞

n
√

xn ≤ limsup
n→∞

xn+1

xn
.

Theorem 4.2 (Cauchy-Hadamard formula). Let
∞

∑
n=0

an(x− x0)
n be a power series and ρ = limsup |an|1/n .

The radius of convergence, R, is

R =


0 if ρ = ∞;

1/ρ if 0 < ρ < ∞;

∞ if ρ = 0



MA3210 MATHEMATICAL ANALYSIS II Page 22 of 30

4.3
Properties of Power Series

Proposition 4.2. Suppose

f (x) =
∞

∑
n=0

an(x− x0)
n

has a radius of convergence R > 0. Then, f is infinitely differentiable on (x0 −R,x0 +R), i.e.

f ′(x) =
∞

∑
n=1

nan(x− x0)
n−1 where x ∈ (x0 −R,x0 +R).

Proposition 4.3. For every k ∈ N, we have the following result:

f (k)(x) =
∞

∑
n=k

n(n−1)(n−2) . . .(n− k+1)an(x− x0)
n−k where x ∈ (x0 −R,x0 +R)

and the radius of convergence of each of these derived series is also R.

Although a power series and its derived series have the same values of R, they may converge on different
sets.

Example 4.4. Consider the power series

f (x) =
∞

∑
n=1

xn

n2 .

By the ratio test, R = 1, so the series converges in (−1,1). The series also converges at x = ±1. In fact, when
x = 1, we obtain the famous p-series for which p = 2, and it is also known as the Basel problem. When x =−1,
we obtain a variant of the Basel problem which can be evaluated as well. Hence, the series converges in [−1,1].

Differentiating both sides of the power series gives

f ′(x) =
∞

∑
n=1

xn−1

n
,

where x ∈ (−1,1). f ′(x) converges at x =−1 but diverges at x = 1, which is the harmonic series. Hence, f ′(x)
converges on [−1,1).

Corollary 4.1. If there exists r > 0 such that

f (x) =
∞

∑
n=0

an(x− x0)
n for all x ∈ (x0 − r,x0 + r) ,

then

ak =
f (k)(x0)

k!
for all k ∈ Z≥0.

Corollary 4.2 (uniqueness of power series). If

∞

∑
n=0

an(x− x0)
n =

∞

∑
n=0

bn(x− x0)
n

for all x ∈ (x0 − r,x0 + r) for some r > 0, then an = bn for all n ∈ Z≥0.
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Corollary 4.3. Let

f (x) =
∞

∑
n=0

an(x− x0)
n have a non-zero radius of convergence R.

Then, for any a and b for which x0 −R < a < b < x0 +R,∫ b

a
f (x) dx =

∫ b

a

∞

∑
n=0

an(x− x0)
n dx =

∞

∑
n=0

∫ b

a
an(x− x0)

n dx.

In other words, a power series can be integrated term-by-term over any closed interval [a,b] contained in
the interval of convergence.

Theorem 4.3 (Abel summation formula). Let bn and cn be sequences of real numbers, and for each
pair of integers n ≥ m ≥ 1, set

Bn,m =
n

∑
k=m

bk.

Then,
n

∑
k=m

bkck = Bn,mcn −
n−1

∑
k=m

Bk,m(ck+1 − ck).

for all n > m ≥ 1, n,m ∈ N.

Theorem 4.4 (Abel’s theorem). Suppose

∞

∑
n=0

an(x− x0)
n has a finite non-zero radius of convergence R.

(i) If the series converges at x = x0 +R, then it converges uniformly on [x0,x0 +R]
(ii) If the series converges at x = x0 −R, then it converges uniformly on [x0 −R,x0]

4.4
Taylor Series

A function f is infinitely differentiable on (a,b) if f (n)(x) exists for all x ∈ (a,b) and for all n ∈ N. This
class of functions is denoted by C∞.

Definition 4.4 (Taylor series). Let f be infinitely differentiable on (x0 − r,x0 + r) for some r > 0. The
power series

∞

∑
n=0

f (n)(x0)

n!
(x− x0)

n is the Taylor series of f about x0.

Definition 4.5 (Taylor series). Considering the Taylor series, set x0 = 0. We then obtain the Maclaurin
Series of f :

∞

∑
n=0

f (n)(0)
n!

xn
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Definition 4.6 (analytic function). A function f is analytic on (a,b) if f is infinitely differentiable on
(a,b) and for any x0 ∈ (a,b), the Taylor Series of f about x0 converges to f in a neighbourhood of x0.

Example 4.5. The functions ex, sinx and cosx are analytic on R and the infinite geometric series
∞

∑
n=0

xn =
1

1− x

is analytic on (−1,1).

4.5
Arithmetic Operations with Power Series

Definition 4.7 (Cauchy product). The Cauchy product of ∑
∞
n=0 an and ∑

∞
n=0 bn is the series ∑

∞
n=0 cn,

where for each n ∈ N,

cn =
n

∑
k=0

akbn−k = a0bn +a1bn−1 +a2bn−2 + . . .+anb0.

Proposition 4.4. Let

f (x) =
∞

∑
n=0

an(x− x0)
n, |x− x0|< R1 and g(x) =

∞

∑
n=0

bn(x− x0)
n, |x− x0|< R2.

For α,β ∈ R, we have the following:
(i)

α f (x)+βg(x) =
∞

∑
n=0

(αan +βbn)(x− x0)
n for |x− x0|< min(R1,R2)

(ii)

f (x)g(x) =
∞

∑
n=0

cn(x− x0)
n, |x− x0|< min(R1,R2) where cn =

n

∑
k=0

akbn−k

Theorem 4.5 (Merten’s theorem). If

∞

∑
n=0

an converges absolutely and
∞

∑
n=0

bn converges then the Cauchy product
∞

∑
n=0

cn converges.

Also,
∞

∑
n=0

cn =

(
∞

∑
n=0

an

)(
∞

∑
n=0

bn

)
.

Recall that for Merten’s theorem, we just need at least one of the series to converge absolutely.

Definition 4.8 (conditional convergence). A series is conditionally convergent if it converges but does
not converge absolutely.

Remark 4.1. If
∞

∑
n=0

an and
∞

∑
n=0

bn converge conditionally,
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then their Cauchy product may not converge.

Example 4.6. Set

an = bn =
(−1)n+1
√

n+1
,

where n ≥ 0. It is clear that both series are conditionally convergent (but not absolutely convergent) by the
alternating series test. The Cauchy product of these two series is

cn =
∞

∑
k=0

(−1)n√
(k+1)(n− k+1)

for all n ∈ N.

Note that n ≥ k so n+1 ≥ k+1 and n+1 ≥ n− k+1 so we are able to obtain a lower bound for |cn|. Hence,

|cn| ≥
n

∑
k=0

1
n+1

= 1 which implies
∞

∑
n=0

cn diverges.

Theorem 4.6 (Riemann rearrangement theorem). Suppose an is a sequence of real numbers, and that

∞

∑
n=1

an is conditionally convergent.

Let M ∈ R. Then, there exists a permutation σ such that

∞

∑
n=1

aσ(n) = M.

There also exists a permutation σ such that

∞

∑
n=1

aσ(n) = ∞.

The sum can also be rearranged to diverge to −∞ or to fail to approach any limit, finite or infinite.

4.6
Some Special Functions

Definition 4.9 (exponential function). The function

E(x) =
∞

∑
n=0

xn

n!
,

for all x ∈ R, is the exponential function.

Proposition 4.5. E : R→ R has the following properties:
(i) E(0) = 1 and E ′(x) = E(x) for all x ∈ R

(ii) E(x+ y) = E(x)E(y) for all x,y ∈ R
(iii) E(x)> 0 for all x ∈ R
(iv) E is strictly increasing (i.e. E ′(x)> 0 for all x ∈ R)
(v)

lim
x→∞

E (x) = ∞ and lim
x→−∞

E (x) = 0
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For (i), any function f (x) that has this property is invariant under successive levels of differentiation.
Actually, one can verify that the exponential function is indeed the only function that is invariant under the
differential operator by treating the differential equation f ′(x) = f (x) as a separable one.

Proposition 4.6. The functional equation

f (x+ y) = f (x) f (y)

holds true only for the exponential function.

Euler’s number, e (≈ 2.71828459045) is defined as the following limit:

e = lim
n→∞

(
1+

1
n

)n

Proposition 4.7. By considering the Maclaurin series of ex, setting x = 1 gives the expansion

e =
∞

∑
n=0

1
n!
.

Proposition 4.8. In relation to sequences, for x ∈ R, ex is defined as

ex = lim
n→∞

ern ,

where rn is an increasing rational sequence which converges to x.

Proposition 4.9. For x ∈ R, ex is continuous on R.

Since the exponential function E is strictly increasing on R and E(R) = (0,∞), then it implies that E is
injective and thus has an inverse function L : (0,∞)→ R, which is also strictly increasing.

We have the following composition of functions

L(E(x)) = x ∀x ∈ R

and

E(L(y)) = y ∀y > 0.

Definition 4.10 (natural logarithm). By the Fundamental Theorem of Calculus, we define L(y) to be
the following integral:

L(y) =
∫ y

1

1
t

dt

The function L : (0,∞)→ R is the natural logarithm, ln(x).

Proposition 4.10. The natural logarithm ln : (0,∞)→ R has the following properties:
(i)

d
dy

lny =
1
y

for all y > 0
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(ii)
lny =

∫ y

1

1
t

dt for all y > 0

(iii) ln(xy) = ln(x)+ ln(y) for all x,y,> 0
(iv) ln(1) = 0 and ln(e) = 1
(v) For x > 0 and α ∈ R, xα = eα lnx

Proposition 4.11. The functional equation

f (xy) = f (x)+ f (y)

holds true only for the logarithmic function.

Corollary 4.4. Let α ∈ R. Then, the function f : (0,∞)→ R is defined by

f (x) = xα

for all x > 0 is differentiable on (0,∞) and

f ′(x) = αxα−1

for all x > 0 as well.

Definition 4.11 (cosine). The function

C(x) = cosx =
∞

∑
n=0

(−1)nx2n

(2n)!

for all x ∈ R, is the cosine function.

Definition 4.12 (sine). The function

S(x) = sinx =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!

for all x ∈ R, is the sine function.

These two trigonometric functions have the following relationship, that for all x ∈ R,

C′(x) =−S(x) and S′(x) =C(x).

Differentiating both sides of each equation will yield

C′′(x) =−C(x) and S′′(x) =−S(x),

which are second order linear homogeneous differential equations which constant coefficients.

Thus, we make the claim that if g : R→ R has the property that g′′(x) =−g(x) for all x ∈ R, then

g(x) = αC(x)+βS(x)
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for all x ∈ R too, where α = g(0) and β = g′(0). The two functions satisfy the identity (C(x))2 +(S(x))2 = 1
for all x ∈ R, which is also known as the Pythagorean identity.

The cosine function is even. That is, C(−x) =C(x) (i.e. the graph is symmetrical about the y-axis). It satisfies
the following addition formula:

C(x+ y) =C(x)C(y)−S(x)S(y) for all x,y ∈ R.

The sine function is odd. That is, S(−x) =−S(x) (i.e. the graph is symmetrical about the origin). It satisfies the
following addition formula:

S(x+ y) = S(x)C(y)+C(x)S(y) for all x,y ∈ R.

The four other trigonometric functions, as well as all the inverse trigonometric functions, will not be discussed.
Moreover, respective small angle approximations will not be discussed too.

Definition 4.13 (gamma function). The gamma function is one commonly used extension of the
factorial function to complex numbers. Denoted by Γ(z), it is defined to be the following convergent
improper integral:

Γ(z) =
∫

∞

0
e−ttz−1 dt where ℜ(z)> 0.

Theorem 4.7. For z ≥ 0, we have the following relationship:

Γ(z+1) = zΓ(z),

which has some semblance to the functional equation f (x+1) = x f (x). Hence,

Γ(n) = (n−1)! where n ∈ N.

Proof. Using integration by parts,

Γ (z+1) =
∫

∞

0
e−ttz dt = −tze−t

∣∣∞
0 + z

∫
∞

0
e−ttz−1 dt = zΓ (z)

and we are done.

Next, to prove the closed form for Γ(n), as Γ(1) = 1, so

n−1

∏
i=1

Γ(i+1)
Γ(i)

=
n−1

∏
i=1

i

Γ(n)
Γ(1)

= (n−1)!

and the result follows by the telescoping product.

Theorem 4.8. lnΓ(z) is convex on (0,∞)

Theorem 4.9 (Bohr-Mollerup theorem). The gamma function is the only function satisfying f (1) = 1,
f (x+1) = x f (x) and f is logarithmically convex.
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The Bohr-Mullerup theorem characterises the gamma function.

There are two types of Euler integral. The gamma function is also known as the Euler integral of the first
kind and the beta function (discussed in the next section) is also known as the Euler integral of the second kind.

Euler’s reflection formula and Legendre’s duplication formula are examples of functional equations closely
related to the gamma function.

Theorem 4.10 (Euler’s reflection formula). For z /∈ Z,

Γ(z)Γ(1− z) = π csc(πz).

Theorem 4.11 (Legendre duplication formula).

Γ(z)Γ
(

z+
1
2

)
= 21−2z√

πΓ(2z).

Definition 4.14 (beta function). For x,y ∈C, where ℜ(x)> 0 and ℜ(y)> 0, the Beta Function B(x,y)
is defined by

B(x,y) =
∫ 1

0
tx−1(1− t)y−1 dt.

Proposition 4.12. B(x,y) is symmetric.

Proof. Use the substitution x = y so B(x,y) = B(y,x),

Theorem 4.12. The beta function is closely related to the gamma function and the binomial coefficients
by the following equation:

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

=
(x−1)!(y−1)!
(x+ y−1)!

The proof of Theorem 4.12 hinges on writing Γ(x)Γ(y) as a double integral and using the technique of
change of variables.
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Chapter 5
Functions of Several Variables
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